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Abstract. We propose a meta-heuristic algorithm for clustering objects
that are described on multiple incommensurable attributes defined on
different scale types. We make use of a bipolar-valued dual similarity-
dissimilarity relation and perform the clustering process by first finding
a set of cluster cores and then building a final partition by adding the
objects left out to a core in a way which best fits the initial bipolar-valued
similarity relation.

1 Introduction

Clustering is defined as the unsupervised process of grouping objects that are
similar and separating those that are not. Unlike classification, clustering has
no a priori information regarding the groups to which to assign the objects.
It is widely used in many fields like artificial intelligence, information technol-
ogy, image processing, biology, psychology, marketing and others. Due to the
large range of applications and different requirements many clustering algo-
rithms have been developed. Jain [14] gives a thorough presentation of many
clustering methods and classifies them into partitioning [18, 17], hierarchical [11,
13, 24], density-based [2, 25], grid-based [1, 22] and model-based methods [7, 16].
New graph-based methods have also been developed in the emerging field of
community detection [8, 20, 21]. Fortunato [9] covers many of the latest ones.

In this paper we present the GAMMA-S method (a Grouping Approach
using weighted Majority MArgins on Similarities) for clustering objects that
are described by multiple incommensurable attributes on nominal, ordinal and
or cardinal scales. We draw inspiration from the bipolar outranking approach
proposed by [3–5] for dealing with multiple criteria decision aid problems. As
such, we assume the data is extracted in a prior stage, such that each attribute
has a clear meaning and expresses a distinct viewpoint for a human agent. Also,
this agent has a clear view on the importance of each attribute and what can
be considered as a discriminating difference in their evaluations. For this we
first characterize pairwise global similarity statements by balancing marginal
similarity and dissimilarity situations observed at attribute level in order to get
majority margins, i.e. a bipolar-valued similarity graph. Good maximal cliques



in this graph, with respect to a fitness measure, are chosen as cluster cores
and then expanded to form a complete partition. As the enumeration of all the
maximal cliques is well known to be potentially exponential [19], we develop a
special meta-heuristic for dealing with the first step. The aim of our method
is to achieve a partition that will minimize the differences between the original
similarity relation and the relation that is implied by the clustering result.

2 Dual similarity-dissimilarity modelling

Let X = {x, y, z, ...} denote a set of n objects. Each object x ∈ X is described
on a set I = {i, j, k, ...} of m attributes of nominal, ordinal and/or cardinal type,
where the actual evaluation xi may be encoded without loss of generality in the
real interval [mi,Mi] (mi < Mi ∈ R). The attributes may not all be of the same
significance for assessing the global similarity between the objects. Therefore we
assign to the attributes normalized weights wi ∈ [0, 1] s.t.

∑
i∈I

wi = 1, which can

be given by the human agent and depend on his knowledge of the problem.
In order to characterize the marginal pairwise similarity and marginal pair-

wise dissimilarity relations between two alternatives x and y of X for each at-
tribute i of I , we use the functions si, di : X×X → {−1, 0, 1} defined as follows:

si(x, y) :=


+1 , if |xi − yi| 6 σi;

−1 , if |xi − yi| > δi;

0 , otherwise.

di(x, y) :=


−1 , if |xi − yi| 6 σi;

+1 , if |xi − yi| > δi;

0 , otherwise.

where 0 ≤ σi < δi ≤ Mi − mi,∀i ∈ I denote marginal similarity and dis-
similarity discrimination thresholds. These thresholds are parameters which can
be fixed by the human agent according to his a priori knowledge on the data and
may be constant and/or proportional to the values taken by the objects being
compared. If si(x, y) = +1 (resp. di(x, y) = +1) we conclude that x and y are
similar (resp. dissimilar) on attribute i. If si(x, y) = −1 (resp. di(x, y) = −1)
we conclude that x and y are not similar (resp. not dissimilar) on attribute i.
When si(x, y) = 0 (resp. di(x, y) = 0) we are in doubt whether x and y are, on
attribute i, to be considered similar or not similar (resp. dissimilar or not dissim-
ilar). Missing values are also handled by giving an indeterminate si(x, y) = 0, as
we cannot state anything regarding this comparison.

The weighted similarity and weighted dissimilarity relations between x and y,
aggregating all marginal similarity statements and all dissimilarity statements
are characterized via the functions ws,wd : X ×X → [−1, 1] defined as follows:

ws(x, y) :=
∑
i∈I

wi · si(x, y) wd(x, y) :=
∑
i∈I

wi · di(x, y)

Again, if 0 < ws(x, y) 6 1 (resp. 0 < wd(x, y) 6 1) we may assume that it is
more sure than not that x is similar (resp. dissimilar) to y; if −1 6 ws(x, y) < 0
(−1 6 wd(x, y) < 0) we may assume that it is more sure that x is not similar (not



dissimilar) to y than the opposite; if, however, ws(x, y) = 0 (resp. wd(x, y) = 0)
we are in doubt whether object x is similar (resp. dissimilar) to object y or not.

Property 1. The weighted dissimilarity is the negation of the weighted similarity
relation: wd = −ws.

In some cases two objects may be similar on most of the attributes but show
a very strong dissimilarity on some other attribute. In this case the objects can’t
be considered overall similar or dissimilar. To model this indeterminate situation,
we define a marginal strong dissimilarity relation between objects x and y with
the help of function sdi : X ×X → {0, 1} as follows:

sdi(x, y) :=

{
1 , if |xi − yi| ≥ δ+i ;

0 , otherwise.

where δ+i is such that δi < δ+i 6 Mi −mi and represents a strong dissimilarity
threshold. Again, this threshold is given by the human agent, in accordance
with his experience concerning the underlying problem. If sdi(x, y) = 1 (resp.
sdi(x, y) = 0) we conclude that x and y are strongly dissimilar (resp. not strongly
dissimilar) on attribute i.

We consider that two objects x and y of X, described on a set I of attributes,
are overall similar, denoted (xS y), if a weighted majority of the attributes in I
validates a similarity situation between x and y and there is no marginal strong
dissimilarity situation observed between x and y.

We formally characterize the overall similarity and overall dissimilarity rela-
tions by functions s, d : X ×X → [−1, 1] as follows:

s(x, y) := ∨©
(
ws(x, y),−sd1(x, y), · · · ,−sdm(x, y)

)
d(x, y) := ∨©

(
wd(x, y), sd1(x, y), · · · , sdm(x, y)

)
where, for q ∈ N0, the epistemic disjunction operator ∨© : [−1, 1]q → [−1, 1] is
defined as follows:

∨© (p1, p2, . . . , pq) :=


max(p1, p2, . . . , pq) , if pi > 0, ∀i ∈ {1 . . . q};
min(p1, p2 . . . , pq) , if pi 6 0, ∀i ∈ {1 . . . q};
0 , otherwise.

Property 2 (Overall similarity-dissimilarity duality).
The overall dissimilarity represents the negation of the overall similarity:
d = −s.

Following from Property 2, we can now say that two objects which are not
similar according to this caracterization can be called dissimilar.

For two given alternatives x and y of X, if ws(x, y) > 0 and no marginal
strong dissimilarity has been detected, ws(x, y) = s(x, y) and both alternatives
are considered as overall similar. If ws(x, y) > 0 and a strong dissimilarity is



detected we do not state that x and y are overall similar or not, and s(x, y) = 0. If
ws(x, y) < 0 and, a strong dissimilarity is observed, then x and y are certainly not
overall similar and s(x, y) = −1. Finally, if ws(x, y) = 0 is observed conjointly
with a strong dissimilarity, we will conclude that x and y are indeed not overall
similar and s(x, y) is put to −1.

We call a Condorcet similarity graph, denoted G(X, s∗), the three-valued
graph associated with the bipolar-valued similarity relation s, where X denotes
the set of nodes and function s∗ : X × X → {−1, 0, 1} weights its set of edges
as follows:

s∗(x, y) :=


+1 , if s(x, y) > 0;

−1 , if s(x, y) < 0;

0 , otherwise.

3 Definition of the clusters

Ideally, a cluster would have all the objects inside it similar to each other and
dissimilar from the rest. In graph theory this may be modeled by a maximal
clique, however, we would also need the maximal clique to be totally disconnected
from the rest of the graph, which on real data will very rarely be the case.

Therefore, in a first stage, we propose to select in the Condorcet similarity
graph G(X, s∗) the best set of maximal cliques on the +1 arcs (thus containing
objects that are, on a majority, similar to each other), which may be considered
as cluster cores. In a second stage, we expand these cores into clusters by adding
objects that are well connected to them in such a way that we try to maximize
the similarity arcs inside a cluster, and minimize the ones between clusters.

Let us introduce several fitness measures we will need in the algorithmic
approach. Given a Condorcet outranking digraph G(X, s∗) and a set C ⊆ X of
objects, we define, for each x of X the similarity majority margin smm towards
the set C:

smmC(x) :=
∑
y∈C

s∗(x, y).

A large positive value of smmC(x) would show that x is similar to the set
C in a consistent manner. A large negative value would mean that x mostly
dissimilar from C.

We define the profile of a set C by the set of all similarity majority margins
for x ∈ X.

We will consider a cluster to have a strong profile is it contains strongly
positive and/or negative similarity majority margins.

In order to achieve a partitioning of the entire dataset we need to detect
well separated maximal cliques that correspond to local maxima of our fitness
measure. To find these local maxima, we define the neighborhood of a maximal
clique as all the maximal cliques that contain at least one object from it.



Let us define now the fitness an alternative x would have as part of a cluster
C through function fC : X → [−1, 1] as:

fC(x) :=

∑
y∈X s∗(x, y) · smmC(x)

|X|2
.

If x is mostly similar to C and compares to the rest of the objects in X
mostly the same as the objects in C then fC(x) will be close to +1.

Finally we define the fitness of a partition as the outcome of the clustering
method. Let f be a function that takes as argument a partition P and outputs
a value inside the interval [−1, 1]. The fitness f of partition P is defined as:

f(P ) :=

∑
C∈P

∑
x,y∈C s(x, y) +

∑
(C1,C2)∈P

∑
x∈C1,y∈C2

−s(x, y)

|X|·(|X|−1)
2

.

4 Clustering Algorithm

We structure our algorithmic approach in three steps:

1. We construct the bipolar-valued similarity relation and its associated Con-
dorcet similarity graph.

2. We find the cluster cores.
3. We expand the cores in a greedy heuristic way.

In the second step, we may use two resolution strategies: exact enumeration
of all the maximal cliques and selection of the fittest ones as potential cluster
cores, or a population-based metaheuristic approach.

For the exact approach we use the Bron-Kerbosch algorithm [6], with the
pivot point improvement from Koch [15]. We then evaluate the fitness of each
maximal clique and compute the neighbourhood matrix from which we retrieve
the maximal cliques that are the local maxima of the fitness function. As previ-
ously mentioned, the number of maximal cliques in a graph can be exponential
[19], making the use of exact approaches for large or even medium clustering
problems rapidly intractable.

To overcome this operational problem, we use a population-based meta-
heuristic close in structure to evolutionary strategies [23]. As such, the meta-
heuristic contains 4 steps: initialization, selection, reproduction and replacement.
Each individual in the population is a maximal clique in the Condorcet similar-
ity graph. Our aim is to discover all maximal cliques that are local maxima of
our fitness measure.

In the initialization step we, first, iteratively generate maximal cliques that
do not overlap with each other. After each object has been covered by at least
one maximal clique, the rest of the population is then generated randomly.

The selection step has a large number of potential variations. We have opted
after several tests for the rank-based roulette wheel method.



The reproduction step is based on a mutation operator specifically designed
for maximal cliques. The maximal clique that will generate a new individual in
the population is incrementally stripped with a given probability of its objects
and then grown by adding other objects until the property of maximality is
reached. The generated population is of equal size with the old one.

In the replacement step, all maximal cliques in the current population that are
local maxima of the fitness measure, based however on the limited exploration
of their neighborhoods that has been done at previous iterations, are kept in the
new population. The rest of the individuals to be kept are selected at random.

The last step orders all the objects that were not included in a core based
on their best fitness to be added to a core. The majority margins heuristic, in
fact, tells us how many relations are in accordance with the decision to add the
object to a particular core, therefore iteratively taking the best pair of object and
core and adding that object to the core is well justified considering our goals to
extract a partition that is in most accordance to the original similarity relation.

5 Results

We present some results on a few well-known datasets such as the Iris, Wines
and Breast Cancer datasets from the UCI Machine Learning Repository [10].

We show the average results of our algorithm compared with the results from
the classical K-means [17] and Single-Link Agglomerative Hierarchical Clustering
(SL AHC) [13]. These algorithms were given the a priori knowledge regarding
how many clusters the outcome should have. These results come from running
every algorithm 100 times over each instance. For the first two datasets, due to
their small size, we have used the exact approach of our algorithm. We have also
set the thresholds to 10%, 20% and 70% of the value range on each attribute
and given equal significance to all attributes.

Table 1. Average results on Jaccard Coefficient (standard deviations in brackets)

Algorithm/Dataset Iris Wines Breast Cancer

K-means 0.529 (0.118) 0.461 (0.100) 0.554 (0.130)
SL AHC 0.589 (0.000) 0.336 (0.000) 0.531 (0.000)

GAMMA-S 0.603 (0.000) 0.643 (0.000) 0.560 (0.007)

We chose the Jaccard Coefficient [12] to measure how close the results of the
clustering algorithms are to the original classes and the Similarity Distance to
measures how close the similarity relation implied by the clustering results is to
the original bipolar-valued similarity relation. This similarity relation implied by
the clustering result puts +1 similarity values between objects inside the same
cluster and −1 similarity values between objects inside different clusters. This



Table 2. Average results on Similarity Distance (standard deviations in brackets)

Algorithm/Dataset Iris Wines Breast Cancer

K-means 0.710 (0.066) 0.615 (0.042) 0.600 (0.045)
SL AHC 0.707 (0.000) 0.371 (0.000) 0.590 (0.000)

GAMMA-S 0.811 (0.000) 0.693 (0.000) 0.677 (0.000)

relation would be in perfect accordance with the clustering results. This measure
is in fact the weighted Performance measure used in Community Detection.

We notice overall that GAMMA-S performs better than K-means and SL
AHC on both these measures. We also have to consider that we neither need to
provide commensurable cardinal attributes nor an a priori number of clusters,
but we take preferential information from a human agent.

6 Conclusions and Perspectives

We conclude from the testing above that our clustering method does indeed give
consistent classification results, comparable with algorithms like K-means and
SL AHC, however without any requirements on the data, as all kinds of attribute
types can be considered. Furthermore, imprecision, uncertainties and even miss-
ing values can easily be handled by the similarity relation defined in this article.
There are many improvements that could be done to increase the performance of
our approach, which will be explored in the future. At the moment there is still
a need to experiment with different variations in the meta-heuristic to assure
a faster convergence. The final result could be further improved by means of a
local search method. We also plan to explore the influence of variations of the
discrimination thresholds (and the inclusion of proportional thresholds) on the
outcomes.
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